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3.1 Avant-propos

Equations fondamentales

Ecoulement compressible 3D  Ecoulement incompressible 3D
» 5 champs inconnus " > 4 champs inconnus

= Pression: p " Pression: p

= Vitesse: u = Vitesse: u

" Masse volumique: P |
» 5 équations de conservation » 4 éguations de conservation

= Conservation de la masse = Conservation de la masse

= Conservation de la gtite de mvt = Conservation de la gtite de mvt

= Conservation de I'énergie T

|:> 2 champs inconnus supplémentaires |:> 2 équations constitutives
= Energie interne e = Equation d’éetat
= Température ; T = Relation thermodynamique
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3.2.1 Conservation de la masse EPFL

Equations de conservation

» Formulation intégrale
débit de p a travers S
I
|
= j o dV + j ) dS =0
b J

l
variation temporelle de p a l'intérieur de V

> Alaide du théoreme de la divergence fﬁ@ dS = fv. QdVv
3 v
j[ PLy. (pu)} dv =0
ot
» Formulation différentielle
op
+V-(pu)=0
~ R =
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3.2.1 Conservation de la masse EPFL
Equations de conservation

» En développant:
V-(pu)=u-Vp+pV-u

0
—+V-(pu)[ap+u-Vp]+pV-uO 8—/;+V-(pu):0

» Dérivée matérielle / totale

DF _OF

+u-VF
Dt ot

> Formulation différentielle

D
“P L pVu=0
Dt
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Lagrange r
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3.2.2 Conservation de la quantité de mouvement EPFL

Equations de conservation

» Formulation intégrale

flux de pu a travers S somme des forces surfacigues et volumiques
I 1
f ) | b
0 . .
= [puar+ [pi-(uu)ds= [&-Z dS+ [ pf av
‘at 4 ]S S 4
i
variation temporelle de p# 3 I'intérieur de V'
Tenseur de contraintes S Pression
Tenseur de contraintes
_— — “—
Z pl + T visqueuses

V-2=—-Vp+V-T

» Pour les fluides parfaits, le tenseur des contraintes est donné par

2=—pl
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3.2.2 Conservation de la quantité de mouvement EPFL
Equations de conservation

» A l'aide du théoreme de la divergence fﬁ.Q dS:fV- Qdrv
a(pu) B oV V

‘[ V- (puu) dV—[V-Z dV+[,0f dv
0(pu) _

l o+ V- (puu) dV_[ —vpdV+[ V-TdVJr[pf dv

» Pour les fluides parfaits (ou les écoulements sans forces visqueuses)

[ O(pu)

———=+V-(puw)|dV =— | VpdV + | pf dV
A (puu) [p lp
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3.2.2 Conservation de la quantité de mouvement EPFL
Equations de conservation

> Formulation différentielle

%Jrv-(puu):V-ZH—pf

Jpu
: fw—i-v-(puu)

dv=[V-Zav+[pfav
V V

oL

0
(aptll) +V-(puu)=—Vp+V-T+ pf

» Pour les fluides parfaits, la relation précédente devient:

O(pu)
Ot

+V-(puu) =—Vp+ pf
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3.2.2 Conservation de la quantité de mouvement EPFL

Equations de conservation

Formulation d’Euler (fluide parfait ou écoulement sans forces visqueuses)

» La conservation de |la quantité de mouvement pour les fluides parfaits s’écrit:

J( pu
<(?pt ) +V-(puu) =—-Vp—+ pf
» En développant le membre de gauche:
8,0 ou :
ul—+V-(pu)|+p|—+u-Vu)|=—-Vp+pf 9219wy =0
[ar (p )] p[at )] p+p SV
| )
Y
=0
» On obtient la formulation d’Euler de la conservation de quantité de mouvement:
Du
= _Vp+pf
P Di pPTp
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PRINCIPES GENERAUX

PU MOUVEMENT DES FLUIDES.
parR M. EULER,

XXI. Nous n’avons donc qu'i égaler ces forces accélératrices
avec les accélerations actuelles qie nous venons de trouver, & nous
obtiendrans les trofs équations fuwaht:s

p— D)=+ G+ G+
Q‘;(TD—(E})+"C%)+”(%)+“’ 72)
R— @D =G+ @+ G+
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3.2.2 Conservation de la quantité de mouvement EPFL

Equations de conservation

Formulation de Lamb (fluides parfaits)

> A l'aide de la relation vectorielle
2 2

u-Vu:V%—u/\(V/\u):V%—u/\w

ou W estle vecteur tourbillon ou vorticité tel que w=VAu
» La formulation d’Euler devient celle de Lamb p%—l—pu-Vu = —Vp+pf
ou 1 u’
——uAW)|=——Vp—-V—+f1f
Ot 0 2
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3.2.2 Conservation de la quantité de mouvement EPFL

Equations de conservation

Formulation de Crocco (fluides parfaits)

> Relation de Gibbs  dh = Tds +— ap
0

» Les différentielles totales peuvent étre développées en fonction des variables spatiales:

le:Vh—TVS

0
» Finalement, la relation de Lamb devient la formulation de Crocco
(9u 2
— —uAwW)|=—Vh +TVs+1 , [al—u/\w)] —le—vu——l—f
Ot | Ot 0 2
2
u A
hy=h+— Enthalpie de stagnation, de réservoir, d’arrét
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3.2.2 Conservation de la quantité de mouvement EPFL

Equations de conservation

Formulation de Crocco - Interprétation

» Formulation générale al—l—VhO —uAw+TVs+T
Ot
> + Permanent Vhy=uAw+TVs+f

> + Force volumique nulle Vho —u/ANw+TVs

Si I’écoulement est isentropique,
> + |sentropique Vho =uAw la vorticité entraine une variation

d’enthalpie de stagnation

L'enthalpie de stagnation est constante
dans tout I’écoulement

* dans un écoulement irrotationnel

ho = ¢St * lelong d’une ligne de courant dans un
écoulement rotationnel
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3.2.3 Conservation de I’énergie =Pr-L

Equations de conservation

transfert de chaleur
i

| i
%fpeo dV+fv-(pe0u)dV:fv-(z-u)dV+fpf-u dV—fv-qu+frdV
7 4 4 4 14 Vv

\ ) \ )
I I

travail des forces surfaciques

» Formulation intégrale

somme de I"énergie contenue dans

le volume V et de son flux a travers et volumiques rayonnement
la surface de ce volume
2
u
€, = e+ — Energie interne de stagnation
2
q=—AVT Fluxde chaleur A Conductivité thermique
/' Rayonnement
2 =—pl

» Pour les fluides parfaits, on obtient:

%fpeo v+ [V (pequyav == [V-(pwav + [ pf-wav - [v-qav + [ rav
|14 V V 14 V 14
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3.2.3 Conservation de I’énergie =Pr-L
Equations de conservation

> Formulation différentielle

D(e,) 9(pe)

vy +V-(peu)=V-(X-u)+pf - u—V-q+r
D 0
P l<)et0): <§t60)+v'(,0€o“):—V'(P“)+V'(T'“)+Pf'“—V'Q+V

» Pour les fluides parfaits, on obtient:

Dle d(pe
{ l<)t0): <az0>+V°(peou)=—V°(pu)+pf-u—V-q+r
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3.2.3 Conservation de I’énergie =Pr-L
Equations de conservation

» Enthalpie d’arrét 1, | 1
hy=h+—u =e+pv+—u"=e,+—p
2 2 0
= pey = phy —p
D o
P éet()):%%)*v(ﬂenu):V-(pu)+V-(T-U)+pf°uV-q+r
D<ho> 8(:0}’0) Op
= +V-(phju)=—+V-(T-u)+pf-u—V-q+r
P~ Y (phyu) == (T-u)+p q

» Pour les fluides parfaits, on obtient:

D<ho> (9(ph0) Op
- V.- (ohu) =L
R ot TV (phu) ot

+pf-u—-V-q+r
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3.2.3 Conservation de I’énergie =Pr-L
Equations de conservation

» Energie statique et enthalpie statique

p%[%uz]:(v-Z)-u+pf-u:—u-Vp+(V~T)-u+pf-u
D 9,
0 D(te): gote)JrV-(peu):pV-quT:VuV-q+r
D(h)  (ph) Dp
— = +V-(phu)=—+T:Vu-V.q+r
P Dt ot (phu) Dt 1
oU on a introduit la Fonction de Dissipation Visqueuse T:YVu= V-(T-u)—(V-T)-u

T:YVu > 0
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3.2.3 Conservation de I’énergie =Pr-L
Equations de conservation

» Entropie
de =Tds — pdv
dh = Tds + vdp
T&—T 8<pS>—|—V~( su)|=T:Vu-V.q+r
Y Ot P ' 1

Pour un fluide sans viscosité et un écoulement adiabatique:

Ds _

=0
Dt
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3.3.1 Equation d’état

Equations constitutives

» Si un gaz est considéré comme parfait:

p:prT

 Constante universelle des gaz R=k-N,=8314 J/(mol.K)
* Masse molaire A/ [kg-mol_l] R

» Constante spécifique du gaz y=— J-kg_1 K
ol |

» Pour un fluide quelconque:

d 1
—p:oszp—ﬁpdT aT—l op 5}7—__[@]
P plOp), plOT ),
d /O Coellicient Name Air Eau
p— (CV p) ( 6 T) _ - Do Compressibilité isotherme 1 4.6 x 1077
p Gp - T Dilatation thermique 1 0.061
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3.3.2 Equation thermodynamique

Equations constitutives

> Avec ¢ = e(p,T) la variation d’énergie interne s’écrit :

de = de d,0+[@J dT
dp ), oT ),

» Comme pour un gaz parfait € = e(T) et avec la définition de la chaleur spécifique C,

Oe [8@]
—1 =0 —| =c
dp )., oT

p
> Ainsi
e:ch(T)dT + const

» Si C, estconstant sur la plage de température concernée

e=c, I + const
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3.3.2 Equation thermodynamique

Equations constitutives

> Avec h = h(p,T') la variation d’enthalpie s’écrit :

dh = % dp + [%] dT
op ), orT ),
> Pour un gaz parfait i = h(T) et avec la définition de la chaleur spécifique c,
Oh [ Oh ]
_— — O —_— = C
op |, or), °

> Ainsi
h:fcp(T)dT + const

» Si Cp est constant sur la plage de température concernée

h = cpT + const
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3.3.2 Equation thermodynamique
Equations constitutives

» Avec h = h(p,T) la variation d’enthalpie s’écrit :
Oh iyt [ Oh
Op oT

dh=|— ] dT

p

T

» Pour un fluide quelconque, a partir de la relation de réciprocité

Oh 1 [8,0] 1 oh

—| =—+— =—(\1-06,-T —| =

[817] p p\OT), p( ) [aT]p “r
» Ainsi

dh=c,dT +~(1=3,-T)dp
P
oT 1
» Coefficient de Joule-Thompson =—] =——(1— T
t w0 =[5 ==L 1=,
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3.4. Sens physique de la vitesse du son E PFL

Equations fondamentales

» Gaz parfait au repos

P = Po>P = Py
> Petites perturbations ,5 et p
. p
P =Pyt P=P l—l_p_ — Po (1+5>
0

» Equations de conservation pour un gaz parfait (unidimensionnel, irrotationnel,
adiabatique, transformations réversible -> isentropique)

8p+8pu:0
ot Ox
- 8u+u8u:_l6_p . %—I—u%:— %%
ot ox  pox ot Ox p’ Ox
| p=const-pl—s a—p:const"yp%l@ZWEQ

Ox Ox p Ox
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3.4. Sens physique de la vitesse du son E PFL

Equations fondamentales

» Le gaz est au repos et nous considérons de petites perturbations, les effets
inertiels peuvent donc étre négligés:

ou
< -
ot

ou p=p,(1+
" o p=mllte

» En utilisant I'expression de la masse volumique et en négligeant les infiniment
petits du second ordre, les équations précédentes deviennent:

Eaz =yrT = ,YE
— =, 5 ! P
U A 5 5
| Ox Ot : _8x OxOt : 8u_a20u_0
du | yp, Oe O’u | yp, O orr ° ox’
+ =0 T =0
Ot p, Ox | Ot p, OtOx
Equation de d’Alembert ou

de la corde vibrante
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3.4. Sens physique de la vitesse du son
Equations fondamentales

» La solution de I'équation des ondes est composée d’une onde progressive et d’'une onde

rétrograde:
u=F(x—ayt)+G(x+ ay) Qw20
)
» En ne considérant que I'onde progressive, on a: u% y du
| Ox ot
ou
_— F' et @: F'ao
Ox ot

» Le fait de négliger les effets inertiels revient a supposer

|uF'|<<|F'a0| soit |u|<<|a0|

Pour que la propagation obéisse a I'équation des ondes, il faut que la vitesse induite par
la perturbation soit tres inférieure a la vitesse de propagation de cette perturbation
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