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3.1 Avant-propos
Equations fondamentales

Ecoulement incompressible 3DEcoulement compressible 3D

 4 champs inconnus

 Pression:
  Vitesse: 
 

 5 champs inconnus

 Pression:

 Masse volumique:

 Vitesse:

 5 équations de conservation  4 équations de conservation

  Conservation de la masse        

  Conservation de la qtité de mvt

  Conservation de la masse        

  Conservation de la qtité de mvt

  Conservation de l’énergie

2 champs inconnus supplémentaires

 Energie interne :

 Température :

2 équations constitutives

 Equation d’état

 Relation thermodynamique
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e
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 Formulation intégrale

 A l’aide du théorème de la divergence

 Formulation différentielle

( )ˆ  0
V S

dV dS
t

n uρ ρ∂
+ ⋅ =

∂ ∫ ∫

3.2.1  Conservation de la masse 
Equations de conservation

ˆ   
V V

dS dV


   n  

( )  0
V

dV
t

uρ ρ∂ + ∇ ⋅ = ∂ ∫

( ) 0
t

uρ ρ∂
+ ∇ ⋅ =

∂

variation temporelle de ρ à l’intérieur de V 

débit de ρ à travers S
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 En développant:

 Dérivée matérielle / totale

 Formulation différentielle

3.2.1  Conservation de la masse 
Equations de conservation

( ) 0
t





 


u

( )      u u u

( ) 0
t t
 

  
  
       
   

u u u

DF F F
Dt t


  


u

0D
Dt


  u
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( , )F x t

DF
Dt

v v '

F F
t


 


u

( )F t ( ')F t

( ', )F x t

x

Lagrange

Euler
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 Formulation intégrale

Tenseur de contraintes

 Pour les fluides parfaits, le tenseur des contraintes est donné par

 ˆ ˆ    
V S S V

dV dS dS dV
t

  


    
    u n uu n f∑

3.2.2  Conservation de la quantité de mouvement
Equations de conservation

p ∑ I T

p∑ I

flux de        à travers S somme des forces surfaciques et volumiques

variation temporelle de        à l’intérieur de

p  ∑ T

Pression
Tenseur de contraintes 
visqueuses

u V

u
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 A l’aide du théorème de la divergence

 Pour les fluides parfaits (ou les écoulements sans forces visqueuses)

 
( )    

V V V

dV dV dV
t


 
       

  
u

uu f∑

 
( )   

V V V

dV p dV dV
t


 
       

  
u

uu f

 
( )     

V V V V

dV p dV dV dV
t


 
         

   
u

uu fT

3.2.2  Conservation de la quantité de mouvement
Equations de conservation

ˆ   
V V

dS dV


   n  
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 Formulation différentielle

 Pour les fluides parfaits, la relation précédente devient:

 
( )

t


 


  


u
uu f∑

( )   
V V V

dV dV dV
t


 
        
  

u uu f∑

 
( ) p

t


 


  


u
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 
( ) p

t


 


   


u
uu fT

3.2.2  Conservation de la quantité de mouvement
Equations de conservation
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Formulation d’Euler (fluide parfait ou écoulement sans forces visqueuses)

 En développant le membre de gauche:

 
( ) p

t


 


  


u
uu f

 La conservation de la quantité de mouvement pour les fluides parfaits s’écrit:

  ( ) ) p
t t


  
                   

uu u u u f ( ) 0
t





 


u

=0
 On obtient la formulation d’Euler de la conservation de quantité de mouvement:

 D p
Dt

  
u f

3.2.2  Conservation de la quantité de mouvement
Equations de conservation
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Formulation de Lamb (fluides parfaits)

 La formulation d’Euler devient celle de Lamb

2 2

( )
2 2

u u
       u u u u u 

 A l’aide de la relation vectorielle

2 1)
2
up

t 
          

u u f

uoù         est le vecteur tourbillon ou vorticité tel que 

 p
t

  


   

u u u f

3.2.2  Conservation de la quantité de mouvement
Equations de conservation
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Formulation de Crocco (fluides parfaits)

 Les différentielles totales peuvent être développées en fonction des variables spatiales:

dpdh Tds


  Relation de Gibbs

0
 ) h T s

t
          

u u f

 Finalement, la relation de Lamb devient la formulation de Crocco

1 p h T s

   

2 1)
2

up
t 

          
u u f

3.2.2  Conservation de la quantité de mouvement
Equations de conservation

2

0 2
uh h  Enthalpie de stagnation, de réservoir, d’arrêt
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Formulation de Crocco - Interprétation

 + Permanent

 Formulation générale

 + Force volumique nulle

 + Irrotationnel 
ou le long d’une 
ligne de courant

0
   h T s

t


     

u u f

0   h T s     u f

0h T s    u 

 + Isentropique 0h  u 
Si l’écoulement est isentropique,
la vorticité entraîne une variation 
d’enthalpie de stagnation

0 0h 

csth =0

L'enthalpie de stagnation est constante 
dans tout l’écoulement
• dans un écoulement irrotationnel
• le long  d’une ligne de courant dans un 

écoulement rotationnel

3.2.2  Conservation de la quantité de mouvement
Equations de conservation
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3.2.3 Conservation de l’énergie
Equations de conservation

 Formulation intégrale

0 0 ( ) ( )  
V V V V V V

e dV e dV dV dV dV rdV
t

  


         
      u u f u q∑ 

2

0 2
ue e 

T q

 Pour les fluides parfaits, on obtient:



0 0 ( ) ( )  
V V V V V V

e dV e dV p dV dV dV rdV
t

  


        
      u u f u q

p∑ I

somme de l’énergie contenue dans 
le volume V et de son flux à travers 
la surface de ce volume

rayonnement

transfert de chaleur

travail des forces surfaciques 
et volumiques

Energie interne de stagnation

Flux de chaleur Conductivité thermique

Rayonnementr
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3.2.3 Conservation de l’énergie
Equations de conservation

 Formulation différentielle

   0 0
0( ) ( )

D e e
e r

Dt t


  


       


u u f u q∑ 

 Pour les fluides parfaits, on obtient:
p∑ I

   0 0
0( ) ( )

D e e
e p r

Dt t


  


      


u u f u q

   0 0
0( ) ( ) ( )

D e e
e p r

Dt t


  


        


u u u f u qT
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3.2.3 Conservation de l’énergie
Equations de conservation

 Enthalpie d’arrêt

 Pour les fluides parfaits, on obtient:
p∑ I

   0 0
0( )

D h h ph r
Dt t t


  

 
      

 
u f u q

   0 0
0( ) ( ) ( )

D e e
e p r

Dt t


  


        


u u u f u qT

2 2
0 0

1 1 1
2 2

h h u e p u e p


      

0 0e h p   

   0 0
0( ) ( )

D h h ph r
Dt t t


  

 
        

 
u u f u qT
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3.2.3 Conservation de l’énergie
Equations de conservation

 Energie statique et enthalpie statique

où on a introduit la Fonction de Dissipation Visqueuse    :     u u uT T T

   
( ) :

D e e
e p r

Dt t


 


       


u u u qT

   21
2

D u p
Dt

  
               

u f u u u f u∑ T

   
( ) :

D h h Dph r
Dt t Dt


 


      


u u qT

: 0 uT
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3.2.3 Conservation de l’énergie
Equations de conservation

 Entropie

Pour un fluide sans viscosité et un écoulement adiabatique:

 
( ) :

sDsT T s r
Dt t


 

         
u u qT

de Tds pd 

0Ds
Dt



dh Tds dp 
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3.3.1 Equation d’état
Equations constitutives

 Si un gaz est considéré comme parfait:

p r T  

• Constante universelle des gaz  8.314 .A J mol KR k N  
• Masse molaire 1kg mol   

1 1Rr J kg K      
• Constante spécifique du gaz

 Pour un fluide quelconque:

T p
d dp dT

 


  1
T

Tp





      
1

p
pT





     

( ) ( )T p
d dp dTp T

p T


 


   
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  Avec                            la variation d’énergie interne s’écrit :),( Tee ρ=

T

e ede d dT
T 




               

  Ainsi

0
T

e


       

 Comme pour un gaz parfait                       et avec la définition de la chaleur spécifique

e c
T 



     

3.3.2 Equation thermodynamique
Equations constitutives

  Si         est constant sur la plage de température concernée                         

( )   e c T dT const 

  e c T const 

 e e T

c

c
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  Avec                           la variation d’enthalpie s’écrit :( , )h h p T

pT

h hdh dp dT
p T

               

  Ainsi

0
T

h
p

       

 Pour un gaz parfait                       et avec la définition de la chaleur spécifique

p
p

h c
T

     

3.3.2 Equation thermodynamique
Equations constitutives

  Si        est constant sur la plage de température concernée                         

( )   ph c T dT const 

  ph c T const 

 h h T

pc

pc
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  Avec                           la variation d’enthalpie s’écrit :( , )h h p T

pT

h hdh dp dT
p T

               

  Ainsi

 Pour un fluide quelconque, à partir de la relation de réciprocité

p
p

h c
T

     

3.3.2 Equation thermodynamique
Equations constitutives

  Coefficient de Joule-Thompson                         

 2

1 1 1 p
pT

h T T
p T




  

                 

 1 1p pdh c dT T dp


   

 1 1JT p
ph

T T
p c

 


         
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3.4. Sens physique de la vitesse du son 
Equations fondamentales

  Gaz parfait au repos

0 0,p p   

  Petites perturbations   et 

  Equations de conservation pour un gaz parfait (unidimensionnel, irrotationnel, 
adiabatique, transformations réversible -> isentropique)

 0 0 0
0

1 1
     



          





ρ~ p~

0=
∂

∂
+

∂
∂

x
u

t
ρρ

x
p

x
uu

t
u

∂
∂

−=
∂
∂

+
∂
∂

ρ
1

p const   1p pconst
x x x

  
 


  

  
  

2

u u pu
t x x





  
 

  
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3.4. Sens physique de la vitesse du son 
Equations fondamentales

  Le gaz est au repos et nous considérons de petites perturbations,  les effets 
inertiels peuvent donc être négligés:

  En utilisant l’expression de la masse volumique et en négligeant les infiniment 
petits du second ordre, les équations précédentes deviennent:
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Equation de d’Alembert ou 
de la corde vibrante
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Chap 3 – Equations FondamentalesFlavio NocaFlavio Noca

Pour que la propagation obéisse à l’équation des ondes, il faut que la vitesse induite par 
la perturbation soit très inférieure à la vitesse de propagation de cette perturbation

3.4. Sens physique de la vitesse du son 
Equations fondamentales

  La solution de l’équation des ondes est composée d’une onde progressive et d’une onde 
rétrograde:

  En ne considérant que l’onde progressive, on a:

0 0( ) ( )u F x a t G x a t    2 2
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t x
 

 
 

u uu
x t

 


 

'u F
x


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
  Le fait de négliger les effets inertiels revient à supposer

0' 'uF F a soit 0u a
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